1	SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY						
		DEPARTMENT OF MECHANICAL ENGIN	CERING	TECHNOLOG	1		
	Class Test – I	Session- July to December 2021	Mon	th- October			
	Sem- 5	Subject- ICE					
Coc	Code - C037511(037) Time Allowed: 2 hrs		Max	Marks: 40			
Note:	-						
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со		
		Unit – I					
1.A	What is meant by V) diagram?	2 4	Remembering	CO2			
1.B	Draw a typical val high speed CI eng before dead centre	8	Remembering	CO1			
1.C	Explain the workin and demerits?	ng of four stroke petrol engine. Discuss its merit	s 8	Remembering	CO1		
1.D	The air fuel ratio o is 16:1 and the term at what percentage that the combustion constant temperatu R= 0.287 KJ/KgK a	o 1 t 8	Applying	CO2			

	Unit – II					
2.A	Explain vapor lock, carburetor icing?		Explain vapor lock, carburetor icing?		Remembering	CO3
2.B	Explain with suitable sketches the combustion phenomena in C.I engines and explain the four stages of combustion in C.I engines with the help of pressure crank angle $(P-\Theta)$ diagram	8	Remembering	CO3		
2.C	Describe the phenomenon of detonation in S.I engine. What are the differences between detonation in S.I engine and knocking in C.I engine?	8	Remembering	CO4		
2.D	A mixture of octane vapor (C_8H_{18}) and air suspended to a petrol engine. The measured amount of CO_2 is 13% by volume in the dry exhaust gases by volume. Assuming the combustion is complete, find out A: F ratio by volume and express this as a percentage of stoichiometric ratios.	8	Applying	CO3		

	SHRI SHANKARAC	CHARYA INSTITUTE OF PROFESSIONAL MANAGEM	ENT AND T	ECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEER	ING		
(Class Test – I	Session- July to December 2021	Montl	n- October	
	Sem- 5 th	Subject- Fluid Machines			
Code	:- C037512(037)	Time Allowed: 2hr.	Max	Marks: 40	
Note: - 2. Solv	• 1.first Question (A) f e any two from B,C,D	rom both unit are compulsory. of each unit.			
Q. No		Marks	Levels of Bloom's taxonomy	со	
		Unit – I			
1.A	Define followings: i. Bounda ii. Drag fo iii. Stream iv. Bounda	rry layer. rce. line body. rry layer separation.	4	R	1
1.B	Explain Boundary lay for the Energy thickn	er thickness, momentum thickness and derive an Expression ess.	8	U	1
1.C	A thin plate is moving the plate is 0.6 m and layer at the end of the density of air as 1.24	g in still atmospheric air at a velocity of 5m/s. The length of d width 0.5m. Calculate (i) the thickness of the boundary he plate and (ii) drag force on one side of the plate. Take kg/m3 and kinematic viscosity 0.15 stokes.	8	Ар	1
1.D	A kite weighing 12.26 string is 32.37 N whe wind of 32 km/hour, an angle of 8 ⁰ with the N/m3.	8	Ар	1	

	Unit – II						
2.A	Explain impulse moment principle.						
2.B	Draw the velocity diagram for Pelton wheel and prove that $\eta_{hmax} = \frac{[1+cos\phi]}{2}$. For maximum Hydraulic efficiency.	8	U	2			
2.C	 A jet of water of diameter 50mm, having a velocity of 20m/s strike a curved vane which is moving with a velocity of 10m/s in the direction of jet. The jet leaves the vane at an angle of 60° to the direction of motion of vane at outlet Determine: (i) The force exerted by the jet on the vane in the direction of motion. (ii) Work done per second by the jet. 	8	Ар	2			
2.D	 A Pelton wheel develops 8000KW under a head of 130m at a speed of 200 r.p.m. assuming the coefficient of velocity for the nozzle 0.98, hydraulic efficiency = 87%, speed ratio 0.46 and jet diameter to wheel diameter ratio 1/9, determine. The discharge required. (i) The diameter of the wheel. (ii) The diameter and number of jet required. If mechanical efficiency is 75%. 	8	Ар	3			

		HARVA INSTITUTE OF PROFESSIONAL MANAGEME	ENT AND T	ECHNOLOGY	
2	ORKI SHANKAKACI	DEPARTMENT OF MECHANICAL ENGINEERI	NG		
0	lass Test. I	Session: July-January 2021	Month	n: October	
S	em- 5 th Sem	Subject: Solid Mechanics			
Code	-C037512(037)	Time Allowed: 2 hrs	Max I	Marks: 40	
Note: -	Attempt all question.	Parts (a) are compulsory of each question. Solve any two	parts from ((b), (c) and (d) o	of each
Q. No		Marks	Levels of Bloom's taxonomy	CO	
		Unit – I			
1.A	Write the expression resilience in a mem	ns for strain energy, proof resilience and modulus of ber under tension and compression.	4	Remembering	CO1
1.B	A steel specimen gauge length unde stored in the spec specimen is 50 kh	1.5 cm ² in cross-section stretches 0.05 mm over 5 cm or an axial load of 30 kN. Calculate the strain energy imen at this point. If the load at the elastic limit for N, calculate the elongation at the elastic limit and the	8	Creating	CO2
1.C	State and prove Ca	stigliano's theorem.	8	Understanding	CO1
1.D	Using castigliano's simply supported b kN/m. Take EI=2.	8	Analyzing	CO2	

	Unit – II			
2.A	What are the merits and demerits of a fixed beam over simply supported beam?	4	Remembering	CO2
2.B	A beam has its ends fixed horizontally at the same level. The beam is of length 'l' and carries a load w at a distance 'a' from one end and 'b' from the other end. Determine the fixing moments at the ends.	8	Analyzing	CO1
2.C	State and prove that Maxwell's reciprocal deflection theorem.	8	Understanding	CO3
2.D	A fixed beam of 6 m span carries point loads of 100 kN and 75 kN as shown in figure. Find (i) Fixing moments at the ends, (ii) Reactions at the supports. Draw the B.M. and S.F. diagram.	8	Creating	CO2

	SHRI SHANKAR	ACHARYA INSTITUTE OF PROFESSIONA	L MANA	GEMENT AN	ND TECHNOLOG	Y	
	DE	PARTMENT OF MECHANIC	AL EN	GINEER	ING		
Clas	Class Test – I Session- July – Dec, 2021 Month-October						
S	em- 5 th	Subject- OPERATIONS RESEA	RCH				
Code -	C037531(037)	Time Allowed: 2 hrs		Ma	ax Marks: 40		
Note – Qu carries 1	uestion 1 (A) & 6 marks.	2 (A) is Compulsory. Attempt an	y One	question	from part B a	nd C, which	
Q. No Questions					Levels of Bloom's taxonomy	CO	
1	Write the applic	cation of operation research in industr	у.	4	Remember	CO1	
2	A small manufa skilled men and model and an model requires work by semi-s hours work by skilled man. By hours per day. T model is Rs. 10 the model of the	acturer employs 5 skilled men and 10 d makes an article in two qualities, ordinary model. The making of a 2 hours work by a skilled man and 2 killed man. The ordinary model requ a skilled man and 3 hours work by union rules no man can work more the manufacturer's clear profit of the and of the ordinary model Rs. 8. For e problem and solve by graphical met	semi- deluxe deluxe hours nires 1 semi- than 8 deluxe mulate hod.	16	Apply	CO1	
3	the model of the problem and solve by graphical method.Solve By Simplex MethodMaximise $Z = 3 X_1 + 5 X_2 + 4 X_3$ Subjected to $2 X_1 + 3 X_2 \le 8$ $3 X_1 + 2 X_2 + 4 X_3 \le 15$ $2 X_2 + 5 X_3 \le 10$ $X_1 X_2$, and X_3 all ≥ 0						

V

				e na state		8	Sec. 1						1
						U	nit– II						٦ ١
	Find the in also find t	hitial ba he corr	isic fea espor	asible s Iding co	olutio ost.	n by r	north-west	corner rule a	nd				
		3	4	6	8	9	$\begin{bmatrix} Available \\ 20 \end{bmatrix}$					×	
1	From	2	10	1	5	8	30			4	Apply	CO2	
		7	11	20	40	3	15						
		. 2	1	9	14	16	13						
	Demand	40	6	8	18	6	આ ગામમાં આવેલ						
	Find the o in which t by Vogel A	ptimum he cells pproxim	n solut cont mate l	tion to ain the Methoo	the fo trans d.	llowir porta	ng transpor tion cost in	tation proble n rupees. Sol	em ve				
	ing on S. I. S. Baro	W,	W,	W ₃	W,	W ₅	Available	A					
2	F, 7		6	4	. 5	9	40			6	Annta	000	Carl I
	F,	8	5	6	7	8	- 30			0	Арріу	CO2	
	Fj	6	8	9	6	5	20						
	F4	5	7	• 7	8	6	10				ta:		
	Required	30	30	15	20	5	100 (Total)					
	Solve the tool solve the solve the solve the solve the solution of the solutio	followin e optim	ng Tra ium so	ansport olution.	ation	probl	em (MOD)	Method) an	d			8	1
		D1		D2	D	3	D4	Supply					
	01	2	:	2	2		1	3					E.
	02	10	1	8	5		4	7					
3	03	7	(5	6		8	5	10	5	Apply	CO2	į.
	Demand	4	-	3	4		4						4

	1-	and the second				
/		SHRI SHANKAR	ACHARYA INSTITUTE OF PROFESSIONA TECHNOLOGY	L MANAGI	EMENT AND	
			DEPARTMENT OF MECHANICAL ENGINI	ERING		
	C	lass Test – I	Session- July-December, 2021	Month- (October, 2021	
	S	emester 5th	Subject- Dynamics of Machines			
	Code	- C037514(037)	Time Allowed: 2 Hours	Max	Marks: 40	
	Note: • attemp Ignore	- Part A of questi t any two parts. the columns of L	ons 1 and 2 is compulsory, from other parts B evel of Bloom's taxonomy and CO.	, C and D oj	f questions 1	and 2,
	Q. No		Marks	Levels of Bloom's taxonomy	CO	
			Question – 1			
	1.A	Explain the wor diagram.	rking of a Centrifugal Governor with suitab	le 4	R	1
	1.B	In a Porter Gov and intersect or central load is 2 are inclined at 3 What is the forc lowest position is the highest pos governor?	vernor, the arms and links are each 25cm long in the main axis. Each ball weighs 4.5kg and 0kg. Sleeve is in the lowest position when arm 80° to the vertical. The lift of the sleeve is 5cm e of friction at the sleeve if speed at ascent from sequal to the speed at beginning of descent from sition? What is then the range of speed	ng nd ns n. 8 m m of	U	1
	1.C	The mass of eac the sleeve is 80k arms are pivote pivoted to links of lower arms to parallel to gover equilibrium spe and 240mm.	h ball of a Proell governor is 7.5kg and load ag. Each of the arms is 300mm long. The upp ed on the axis of rotation and lower arms a 40mm from the axis of rotation. The extension o which balls are attached are 100mm long an enor axis at the minimum radius. Determine t eds corresponding to extreme radii of 180m	on er re ns 8 nd 8 he m	U	1
	1.D	In a spring load 5kg and lift of s to float is 240rp 110mm. The mo range of speed, roller arms are between center of spindle is 140mm account obliquit	ed governor of Hartnell type, mass of each ball leeve is 50mm. Speed at which governor begi om, and at this speed the radius of ball path ean working speed of governor is 20 times t when friction is neglected. If lengths of ball at 120mm and 100mm respectively, and if distan of pivot of bell crank lever and axis of govern n, find initial compression of spring, taking in y of arms.	is ns is he nd 8 ce or to	U	1

	Question – 2			
2.A	Define Balancing of rotating masses and explain the need for balancing of rotating masses.	4	R	2
2.B	(i) Define Sensitiveness of governor (ii) Define Stability of governors (iii) What is isochronous governor? (iv) Explain Hunting in Governors	8	U	1
2.C	A shaft carries four masses A, B, C and D of magnitude 200,300,400 and 200kg respectively revolving at radii 80,70,60 and 80mm in planes measured form A at 300,400 and 700 mm. Angles between the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. Balancing masses are to be placed in planes X and Y. Distance between planes A and X is 100mm, between X and Y is 400mm and between Y and D is 200mm. If balancing masses revolve at a radius of 100mm, find their magnitudes and angular positions.	8	A	2
2.D	Explain the condition of static and dynamic balancing of rotating masses in detail with suitable diagrams.	8	U	2

<